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Abstract—For the Interacting Multiple Model (IMM) 

method of trajectory tracking, a genetic optimization 
procedure is proposed that optimizes its internal parameters. 
For trajectory filtering, the quality of the algorithm is 
determined by not one but multiple criteria. The proposed 
optimization algorithm makes it possible to improve and 
identify Pareto-optimal solutions. 
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I. TRAJECTORY TRACKING PROBLEM 

An observed object (an aircraft) moves according to the 
dynamics: 

),( xtfx   (1) 
where x is the state vector. For the needs of navigation in air 
traffic control (ATC), the following simple version of aircraft 
dynamics is often used [1]: 
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Here, Nx and Ex  are the north and east aircraft coordinates, 
V  is the velocity magnitude,  is the course angle; the 
controls w and u are the longitudinal and lateral 
accelerations; it  is the current time instant. The motion 
system (2) with 0)()(  twtu  is called the constant 
velocity (CV) model [1], [2]. The section where )(tu  = const 
and 0)( tw  corresponds to the coordinated turn (CT) 
model, the section where 0)( tu and )(tw = const is the 
constant acceleration (CA) section. 

Surveillance devices such as radars, GNSS, bearing- and 
distance-measurement systems make measurements at 
discrete instants it :  

iiii txthy  ))(,( . (3) 
Here, i is the random measurement error. For many 
measuring systems (radars, GNSS), the function h  simply 
selects the “geometric” part of the coordinates ( Nx , Ex ) of 
the state vector x .  

The trajectory tracking filtering problem is the problem 
of making an estimate ix̂  of the state vector )( itx  at it  as 
the function (or algorithm) of the measurement history up to 
the time instant it : }):({ˆˆ ijyxx ji  . 

In the case where dynamics (1) and observation 
equation (3) are linear and the measurement errors i  are 
Gaussian, the Kalman filter [3] is the best estimator of the 
state vector that minimizes the mean squared error 

}))(ˆ{()( 2
iii txxEtJ   (4) 

If dynamics (1) has “switches” in time (for example, in 
dynamics (2), the controls )(tu  and )(tw  have the piecewise-
constant structure), the Kalman filter is not optimal.  

For the motion with the switching dynamics (2), the 
behavior of criterion (4) as a function of time t  along the 
trajectory can vary greatly depending on the filtering 
algorithm [2]. For example, as a rule, algorithms that provide 
a small value of J  in time segments of long-term constancy 
of the controls )(u  and )(w  have a large peak of J  values 
at the instant of switching the controls )(u , )(w . The 
opposite is also observed: algorithms that have a small peak 
at the time of changing the controls have the worst J  in the 
segments of constancy. 

Algorithms based on the hidden Markov models (HMM) 
show quite balanced behavior (the relative smallness of the 
criterion )( itJ  in all sections of the aircraft motion) [4]. The 
Interacting Multiple Model (IMM) method [2], [4], which is 
based on HMM and includes several Kalman filters with 
different motion models, is the mostly implemented in ATC 
systems algorithm.  

The IMM method has a large number of parameters that 
affect the quality of its work [2], [4]. The most important 
thing is which and how many dynamics models are included 
in its structure. With a fixed set of dynamics models, the 
process of switching between them is very important. The 
switching is governed by the transition probability matrix. Its 
elements (or the constants on which they depend) are the 
second important tuning set of parameters. Also, the 
parameters are important that define the behavior of each 
model, including the noise level of the dynamics. 

The authors set the problem of adjusting the parameters 
of the IMM algorithm in order to improve the quality of its 
work [6]–[8]. It is important to note that the influence of 
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parameters on the work of the IMM method is complex. In 
addition, the authors think of changing the number of models 
in the future. Hence, both real-valued and integer parameters 
will appear in the problem. Therefore, the authors decided to 
use direct search methods for optimization. The genetic 
approach, which is a direct search with heuristics [5] (each 
individual in the population of the genetic algorithm 
corresponds to a fixed set of the IMM parameters), seemed 
to be the most convenient option and was implemented by 
the authors [6]–[8]. 

II. TRAJECTORY TRACKING QUALITY CRITERIA 

An important feature of the problem under consideration 
is that, in practical trajectory tracking, it is usual to use other 
criteria rather than the criterion J  to assess the quality of the 
trajectory tracking work. These criteria describe the 
proximity between the true state )( itx  and its estimate ix̂  in 
different senses. In air traffic control, the quality of trajectory 
approximation is evaluated in “channels” and motion 
sections. The quality requirements are summarized in 
standards [9], [10]. 

The trajectory of the aircraft is divided into sections, i.e., 
the intervals of constancy (CV, CT, CA) of the controls )(u  
and )(w  in system (2), as well as the sections of stabilization 
after the change of controls [9].  

Сhannels are scalar indicators [9] that characterize the 
deviation vector xtx ˆ)(  : the longitudinal lon  and lateral 

lat  deviations and the deviations in the velocity magnitude 
VtVV ˆ)(   and the course angle  ˆ . The 

longitudinal and lateral deviations are expressed by the 
formulas:  
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Standards [10] set the upper limits of the root-mean-
square (RMS) deviations in the channels separately for the 
sections of constant controls and for the maximum deviations 
during the control switching sections. These values depend 
on the “observation scheme”: the number of radars, the time 
step of measurement income, and the level of the error  . 
The observation scheme is strictly prescribed in 
standards [10]. 

In order to make the criteria suitable for different 
observation schemes and different maneuvering capabilities 
of the aircraft, it was decided to compare the deviations   
not with the standard, but with the Cramér-Rao lower bound 
(CRLB) [11, 12]. The Cramér-Rao lower bound sets the 
lower bound for the mean square of the deviation of the 
unbiased estimates x̂ . It can be calculated using dynamics 
(2) and the controls )(u and )(w . In our case, it is a 4×4 
matrix with the elements NNR , NER , …. The computational 
formulas for )(tR  as a function of time t  are based on the 
formulas from [12] applied to dynamics (2). 

The absolute deviations   are converted into the relative 
deviations   by dividing by the corresponding value of the 
CRLB: 

EENENNlonlon RRRt  22 sincossin2)(cos/ , 

EENENNlatlat RRRt  22 coscossin2)(sin/ , 

VVVV R/ ,          R/ .  

After this transformation, the deviations   become not 
only universal relative to different observation schemes, but  
also surely applicable to different motion sections: at the 
switches of the controls u and w , the CRLB )(tR , as well 
as an estimate )(ˆ tx , has a peak and, after the switch, it has a 
stabilization section [8]. Due to this property, in our 
algorithm, instead of the criteria from standards [10], we 
apply other criteria based on the relative deviations  . 

In our optimization program, the deviations   and   are 
calculated along each trajectory from the training set. Then 
we calculate the criteria: the RMS deviations in the channels 

lonc , latc , Vc , and c , as well as the combined RMS 

deviations dc2  in the plane ( Nx , Ex ) and dc4  over the 
entire state vector. The calculation for the one-dimensional 
channel criterion is performed according to the following 
formula (the example is for lonc ): 
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where N  is the number of trajectories in the training set, kn  
is the number of measurements in the k th trajectory, 

  N
k knn 1 , and k

it is the instant of the i th measurement 
in the k th trajectory. The multidimensional criteria dc2 and 

dc4  are calculated by to the following formulas:  
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where T
latlond ][2  , T

Vlatlond ][4  , and dR2  
is the left upper 2×2 block of the matrix R .  

Since the estimates x̂  are affected by random 
measurement errors  , the values of the criteria lonc , 

latc ,..., calculated using the set of trajectories are random 
numbers themselves. To correctly handle them, the genetic 
program calculates the confidence intervals for lonc , latc ,.... 
The calculation procedure is presented in [8]. 

III. THE PARETO FRONT CALCULATION 

In trajectory tracking, algorithms with sufficiently small 
values of different quality criteria are needed for practical 
use. The criteria may be contradictory: for example, an 
improvement in the criterion Vc  in the velocity channel may 
lead to a worse estimation of the coordinates on the plane 
and higher values of the criterion dc2 . Simulations confirm 
this fact: it was observed that the values of the parameters 
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optimal for each criterion do not coincide and are often quite 
far from each other. 

The search for parameters that are simultaneously good 
for different criteria, but not necessarily optimal according to 
any criterion, closely echoes the search for Pareto-optimal 
points. Therefore, the authors decided to introduce the 
determination of a Pareto front into the existing [6]–[8] 
genetic optimization algorithm. For this purpose, the 
nondominaned sorting algorithm from [13] was used. 

It should be noted that there is a range of genetic 
optimization algorithms (including NSGA-II described in 
[13]) initially focused on multi-criteria optimization [14] and 
special processing the Pareto-optimal individuals in the 
selection procedures. The authors withheld the transition to 
such algorithms, since the existing genetic algorithm [6]–[8] 
seems suitable for finding the Pareto- optimal solutions. 

The nondominanted sorting algorithm ranks the 
population by assigning different ranks to the individuals. 
Rank 1 corresponds to the Pareto-optimal individuals. 
Rank 2 is for the individuals that become Pareto-optimal 
after the removal of the individuals of rank 1, etc. The ranks, 
on the one hand, show the proximity of the solution to Pareto 
optimality and, on the other hand, allow us to visualize the 
processes within the genetic optimization. For example, the 
mutation (non-directed breeding) has the goal of diversifying 
the population as much as possible, and, during the mutation, 
we should expect the appearance of individuals with 
different ranks. The selection procedure should leave the 
“correct” (from a practical standpoint) individuals in the 
population, and it is expected that, as a result of its work, 
individuals with a high rank will be preserved. 

Such properties of the genetic procedures were 
demonstrated in the simulations. During the work, the 
computations were performed on the Uran supercomputer at 
the IMM UB RAS. The maximum population size was 4,000 
individuals. The training set consisted of 2000 model 
trajectories with dynamics (2) with different observation 
schemes and maneuverable capabilities of the aircraft. The 
modeling technique is described in detail in [7], [8]. 

Figs. 1–3 show the projections of the population on the 
plane of the two criteria. Fig. 1 presents two criteria latc and 

lonc , which reflect the quality of the trajectory filtering in 
the horizontal plane. There is a weak “correlation” between 
the values of the criterions within the population. Individuals 
of rank 1 are placed in the lower left corner as if they are 
Pareto-optimal only for these two criteria. The color of the 
remaining individuals gradually changes from green to blue 
in accordance with the rank in the direction from the lower 
left corner to the upper right corner. Fig. 2 shows the 
projection of the population on the plane of the criteria c  
and Vc . In contrast to Fig. 1, there is no “correlation” 
between the criteria, while the distribution of ranks is 
different: Pareto-optimal solutions are located among other 
solutions in the middle of the figure. This is due to the fact 
that the figure is a projection of a complex spatial picture, 
and individuals with “average” quality values of the criteria  
c  and Vc have very good values of the rest. 

In all Figs. 1–3, the diversity of the population is 
noticeable: there are many individuals with different criteria 
values and different ranks. Fig. 3 presents the same plane of 

two criteria Vc and c  as in Fig. 2, but shows only those 
individuals that “survived” after all the generations of the 
selection process. It can be seen that only individuals of rank 
1 and 2 remain; thus, the current selection procedure really 
selects Pareto-optimal solutions or points close to them. 

 

Fig. 1. The projection of the genetic algorithm population onto the plane 
of the criteria clon and clat 

 

Fig. 2. The projection of the genetic algorithm population onto the plane 
of the criteria cφ and cV. 

 

Fig. 3. The projection of the genetic algorithm population onto the plane 
of the criteria cφ and cV. The individuals that “survived” after all the 
generations of the selection process. 

Fig. 4 shows the plane of two genes 13g  and 15g , i.e., 
two different parameters of the IMM method. The 
individuals are depicted so that the color, as in the figures 
above, corresponds to their rank. It can be seen that the 
individuals of different ranks are well “mixed” with each 
other, including the individuals with rank 1. This means that 
the Pareto-optimal parameters are very different and there is 
no concentration of them near some point. The same pattern 
is seen in Fig. 5 for the other two genes 11g  and 12g , but, in 
contrast to Fig. 4, the entire population as a whole is biased 
to some more optimal values 
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Fig. 4. The projection of the population onto the plane of genes g13 and g15 

 

Fig. 5. The projection of the population onto the plane of genes g11 and g12 

IV. CONCLUSION 

Using the genetic algorithm in simulations, the authors 
obtained the parameters of the IMM method that have 
sufficiently small values of multiple criteria reflecting the 
requirements of the real trajectory tracking algorithms. Using 
the nondominanted sorting, the Pareto-optimal solutions 
were identified. In the future, the algorithm can be improved 
by introducing the priority of individuals with a high rank 
into the selection procedure. 
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