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Abstract: We describe an algorithm for recovering a trajectory of an aircraft that is based
on the construction of a bundle of approximating trajectories. Each of them is a possible
version of the real aircraft motion. The specific feature of the algorithm is the approximation of
measurements by means of a fixed set of motion patterns. A procedure of detecting the motion
type determines the most probable motion pattern, and then the weight of the corresponding
approximating trajectory in the final estimate of the aircraft current position increases. Such a
design improves the accuracy of the coordinate determination at the stages of steady motion.
The results of application of the algorithm to some model data are presented.
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1. INTRODUCTION

We consider the task of on-line aircraft trajectory recon-
struction according to incoming radar measurements: after
arrival of the next radar measurement, the algorithm must
immediately yield an estimate of the aircraft position. The
main difficulty in the problem is that the object moves non-
stationary, i.e., it performs maneuvers whose characteris-
tics and duration are unknown to the observer. Here, long-
term sections are possible where the motion type is con-
stant, on which the aircraft trajectory is well approximated
by one simple model. In such sections, it is important
that the recovery algorithm should yield accuracy close
to the accuracy of algorithms specially designed for this
particular type of motion. In addition, the robustness to
“outliers” in measurements is important for work in real
situations. There is a large number of failures in real data
that can lead to a loss of the trajectory by the recovery
algorithm.

In spite of the existing solutions (see Bar-Shalom et al.
(2004), Konovalov (2014)), a lot of publications constantly
appear on various aspects of this problem; see, for example,
Bortnikov (2014). They consider the trajectory processing
not only for the aircraft motion, but also for other objects;
various mathematical methods are used, including those
involving the use of multiple motion models (see, for
example, Gutorov (2017)).
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The effectiveness of this approach lies primarily in the
timely detection of the motion type (the localization of
maneuvers).

In the present paper, one of the possible solutions of this
problem is considered. The results of processing typical
model data are presented.

2. GENERAL ALGORITHM DESCRIPTION

The basic structure of the algorithm is a set (bundle) of
“most probable” aircraft trajectories, which is constructed
taking into account the dynamics of the aircraft and
possible outliers of measurements. The endpoints of the
trajectories in the bundle are used to construct an estimate
of the aircraft position. This estimate is issued as a result
of the algorithm at the current time.

We assume that the aircraft moves in a horizontal plane
according to the standard model of the simplest airplane
motion in Akhmedov et al. (2004) (x and z are the
coordinates on the plane, ϕ is the path angle, and v is
the speed):











ẋ = v cosϕ,
ż = v sinϕ,
ϕ̇ = u/v,
v̇ = w.

In the case of constant tangential w and transversal u
controls, these equations can be integrated analytically,
see Bedin et al. (2010). Each trajectory of the bundle cor-
responds to the dynamics and piecewise constant controls
w and u. It is assumed that the duration of the sections of
constancy cannot be less than a certain given constraint.

At the beginning of the algorithm work, the bundle startup
procedure is executed with several first measurements.
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Further, the main cycle is running where each iteration
is connected with receiving a new measurement.

The track bundle is recalculated using measurements from
a sliding time window of a fixed duration ending with
the last measurement. The recalculation is started at each
newly arrived measurement. A bundle of trajectories is
formed with a view to support the maximum representa-
tiveness of various variants of motion.

For each trajectory of the bundle, the “accordance with
measurements” criterion is calculated taking into account
the distance between the trajectory and the measure-
ments, as well as additional penalties.

Several criteria with different properties are used. The
following properties are common to all criteria:

• the smaller value of the criterion corresponds to the
trajectory that is closer to the measurements;

• if the trajectory passes exactly through the measure-
ments, the value of the criterion is zero.

Additionally, the penalties are charged:

• for exiting the limitation on the maximum absolute
value of the transversal and tangential controls;

• if the duration of a constant control section is less
than the prescribed value;

• if the duration of two adjoining constant control
sections is less than the prescribed value;

• if the value of the aircraft velocity module is too small
or too large;

• if the motion type does not correspond to the type
determined by the motion detector.

3. BASIC PROCEDURES OF ALGORITHM

Track extension and track trimming. At this stage, the
predicted position of all tracks is calculated at the time
of the newly arrived measurement. The last section of
constant controls is extended until the moment of the
current measurement. On the other hand, the tracks are
shortened in time from the old measurements, so that the
total duration of the track does not exceed the preset
window length.

New measurement branching. Branching is a procedure
where, for each trajectory, possible variants of its extension
are constructed with altered (with respect to the original
trajectory) controls. There is a continuous “gluing” of
the branch with the parent trajectory at an intermediate
point. Choosing different branch points on the initial
trajectory and different control values in the section after
the branch, we obtain different variants of the trajectory.
Only a few of all the possible options will be left in the
bundle. The best values of the accordance criterion select
the trajectories to be kept.

One of the variants of the branching is the trajectory
that hits exactly the point of the last measurement.
To construct this trajectory, we use the solution of an
auxiliary problem of hitting a point described in Bedin
et al. (2010). Other options are also used: a branch with
zero control and branches that hit random points near the
last measurement. A branch with zero control is taken with
intention to improve the approximation of measurements

in areas where the aircraft finishes its maneuver and starts
to move uniformly along a straight line.

At the same stage, special trajectories are formed, namely,
“OLS straight line” and “OLS circle”, which are calculated
without using any trajectory of the bundle as the parent
path. The root-mean-square deviation of the constructed
trajectory from the measurements is minimized. The “OLS
straight line” assumes constant tangential acceleration
and zero transversal acceleration. The “OLS circle” is
constructed with zero tangential acceleration and constant
transversal acceleration.

Motion Type Detecting The main algorithm forms the
evaluation of the tangential and transversal accelerations.
Each of them is analyzed separately by a special algorithm,
which we shall later call the “detector”. The purpose of
the detector is to discover that the input signal is close to
constant, or vice versa, to discover its sudden change after
a period of constancy.

Consider the detector in more details. Let a certain func-
tion u(t) be measured at discrete time instants ti; its value
at the time ti is denoted ui. We denote by tf the current
instant for which the analysis is carried out; the index f
for other values means that they correspond to this time.

The detector has two modes: the mode for searching the
constancy of u(t) and the mode for searching the end of
the u(t) constancy section.

Preliminary bundle pruning. At this stage, the trajec-
tories that are poorly aligned with the available measure-
ments and with physical limitations are deleted.

Selective optimization. Optimization means the varia-
tion of the values of controls and switching times between
the sections of constant control. A direct search method
for finding the minimum of a multidimensional function
is used. The optimization procedure applied to all the
trajectories leads to poor results due to the “thinning”
of the bundle and the loss of multi-hypotheses. Therefore,
optimization is carried out only over a small number of
trajectories with the best value of the criterion.

Duplicate tracks deleting. A matrix of mutual distances
between the bundle trajectories is created. In this case, if
two coincident tracks or very close tracks are detected in
the process of creating the distance matrix, then the track
with the less good criterion is removed from the bundle.

Calculation of the current position of the aircraft. At
each instant, when the measurement is arrived, the algo-
rithm must produce an estimate of the aircraft position as
an output. We use the averaging of the positions at this
time for the trajectories of the bundle.

The estimation using the same criterion as in the basic
procedures does not always yield good results. In the
described version, the evaluation of the current position
is generated using weights derived from other criteria of
quality.

Not all available trajectories of the bundle are involved in
the estimation, but only those for which the value of the
main criterion of accordance is small. For each trajectory,
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its weight is calculated. Depending on the detected type of
current motion, the weight of the “OLS” trajectories can
be forcibly increased.

Grouping and pruning. The objective of this procedure
is to reduce the number of tracks in the bundle while
maintaining the representativeness of different hypotheses
about the aircraft motion. A pair of trajectories with a
minimum distance is determined in the matrix of mutual
distances between tracks of the bundle and the trajectory
of this pair with the worst criterion is removed from the
bundle. Then we again look for a pair of trajectories
with the minimum distance, etc. The procedure continues
until the number of trajectories is less than a prescribed
number.

4. OLS STRAIGHT LINE

Consider the problem of constructing an optimal straight-
line motion with a constant tangential acceleration. We
should construct the trajectory closest to the measure-
ments in the sense of mean-square deviation. This problem
is not linear due to the constraint that the acceleration
have to be parallel to the velocity. Therefore, we construct
a quasi-optimal solution with three linear subproblems.

(1) First, we solve the linear problem of construction
of an optimal motion along a straight line with a
constant velocity:

Z → x0, z0, vx, vz
(Z is the set of measurements, x0, z0 are the coordi-
nates of the initial point, vx, vz are the projections of
the velocity on the coordinate axes).

(2) Then we find the longitudinal acceleration for the
straight line with the fixed direction obtained in the
previous step:

Z,
vx
vz

→ x0, z0, v0, w

(v0 is the magnitude of the initial velocity of motion
along a straight line, w is the magnitude of the
tangential acceleration).

(3) For a given ratio between magnitudes of the initial
velocity and the longitudinal acceleration, we correct
the direction of the straight line:

Z, v0, w → x0, z0, αx, αz

Using it, we obtain the projections of the initial
velocity (vx0 = v0αx, vz0 = v0αz) and a new value

of tangential acceleration (w := w
√

α2
x + α2

z).

Each of the problems above is linear and has an analytic
solution.

If at the stage (2) we get |w| ≤ w∗ (w∗ is a given parameter
of the algorithm), we decide that the true motion occurs
without acceleration. In this case, we use the straight line
from stage (1) as the solution.

5. OLS CIRCLE

We consider the problem of approximating a set of mea-
surements in the plane

Z = {Zi}
n

i=1
, Zi =

[

x̃i
z̃i

]

∈ R
2

by a circular motion ξ(t) = [x(t), z(t)] with constant
velocity. We assume that the parameters of the motion
corresponds the time t0, and the measurement instants
are denoted by {ti}, i = 1, . . . , n. The parameters of the
circular motion are:

• R is the radius;

• ξc = [xi zi]
T
∈ R

2 is the center of the circle;
• ϕ0 is the angle between axis x and a line connecting
points ξ(t0) and ξc;

• v is the speed.

Thereafter, instead of the parentheses to denote the time
reference, we use subscripts, for example:

ξi := ξ(ti) = [xi zi]
T
.

The approximation we make is in the sense of a mean-
square criterion with weights {wi}

n
i=1:

J(ξ(·)) =

n
∑

i=1

wi‖Zi − ξi‖
2

n
∑

i=1

wi

, wi ≥ 0 .

Here and below, we assume that
∑n

i=1
wi = 1, without

loss generality.

The position ξi = [xi zi]
T

is described by the following
equations:

{

xi = xc +R cosϕi ,

zi = zc +R sinϕi ,
ϕi = ϕ0 +

v

R
(ti − t0) .

Here ϕi are the angular positions of the point ξi with
respect to the center of the circle. Since the velocity v
enters the equations only in the combination v/R, it is
convenient to introduce a new parameter ω = v/R which
means the angular velocity of motion along the circle.
Make some useful designations:

∆ϕi = ω(ti − t0) ,
[

xi
zi

]

=

[

xc
zc

]

+ R

[

cosϕ0 − sinϕ0

sinϕ0 cosϕ0

] [

cos∆ϕi

sin∆ϕi

]

,

ξi = ξc +RS(ϕ0)r(∆ϕi) . (1)

Here we introduce new symbols for the orthogonal rota-
tion matrix S and the direction vector of unit length r
(formulas are given for an arbitrary angle ψ):

S(ψ) =

[

cosψ − sinψ
sinψ cosψ

]

, r(ψ) =

[

cosψ
sinψ

]

.

It is useful to note that

S(ϕ0)r(∆ϕi) = S(∆ϕi)r(ϕ0) (2)

and equation (1) can be rewritten as

ξi = ξc +RS(∆ϕi)r(ϕ0) .

Thus, the problem has the form

J = J(ξc, R, ϕ0, ω) =

n
∑

i=1

wi‖Zi − ξi‖
2 → min

ξc,R,ϕ0,ω
(3)

provided that ξi meets (1).

5.1 Partial Analytic Minimization of Functional J

The expression of ξi is linear with respect to the center
ξc of the circle, so the partial minimization in problem
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(3) with respect to the variable ξc only can be written in
analitical form:

∂

∂ξc
J = −2

n
∑

i=1

wi(Zi − ξi)
T

= −2

n
∑

i=1

wi

(

Zi − ξc −RS(ϕ0)r(∆ϕi)
)T

= 0

⇔ ξ̂c =

n
∑

i=1

wiZi −RS(ϕ0)

n
∑

i=1

wir(∆ϕi) . (4)

Here ξ̂c is the optimal value of the parameter ξc. Let’s
introduce some notations:

Ẑ =

n
∑

i=1

wiZi , r̂ =

n
∑

i=1

wir(∆ϕi) .

Next, we substitute expression (4) for ξ̂c into the func-
tional J and obtain a modified functional Jξc :

Jξc = min
ξc

J

=

n
∑

i=1

wi

((

Zi − Ẑ
)

−RS(ϕ0)
(

r(∆ϕi)− r̂
)

)2

=
n
∑

i=1

wi

(

Zi − Ẑ
)2

− 2R

(

n
∑

i=1

wi

(

Zi − Ẑ
)T

S(∆ϕi)

)

r(ϕ0) +R2
(

1− r̂2
)

.

Here we use equality (2). Let’s make a new notation:

d̂ =

n
∑

i=1

wiS(∆ϕi)
T

(

Zi − Ẑ
)

=

n
∑

i=1

wiS(−∆ϕi)
(

Zi − Ẑ
)

.

We obtain the final formula for the partial optimized
functional

Jξc = min
ξc

J

=

n
∑

i=1

wi

(

Zi − Ẑ
)2

− 2R d̂
T

r(ϕ0) +R2
(

1− r̂2
)

, (5)

and a new problem

Jξc → min
R,ϕ0,ω

In the new problem, the partial optimization in R can be
done analytically too:

∂

∂R
Jξc = −2d̂

T

r(ϕ0) + 2R
(

1− r̂2
)

= 0

⇔ R̂ =
1

(1− r̂2)
d̂
T

r(ϕ0) . (6)

Optimization for ϕ0 is also analytical: it is sufficient to
note that the choice of the angle ϕ0 is equivalent to the
choice of the unit vector r(ϕ0). The latter enters functional
(5) linearly. The minimum, therefore, is achieved when

r(ϕ0) ⇈ d̂ ⇔ r(ϕ0) =
d̂

‖ d̂ ‖
. (7)

Substituting the optimal r(ϕ0) from (7) into the expression

for the optimal R̂, we obtain the final formula for it:

R̂ =
‖ d̂ ‖

(1− r̂2)
.

Fig. 1. An example of the typical behavior of the func-
tional J̃

We also get a new functional optimized over R, ϕ0, after
substituting (6), (7) into (5), and a new problem as follows:

Jξc,R,ϕ = min
R,ϕ0

Jξc = min
ξc,R,ϕ0

J

=
n
∑

i=1

wi (Zi − ẑ)2 −
d̂2

(1− r̂2)
→ min

ω
, (8)

Functional (8) depends on one parameter ω only, so the
entire problem reduces to a one-dimensional minimization.
To normalize the functional, we make some transforma-
tions. Let us introduce “root-mean-squared” deviation of
measurements:

σZ =

√

√

√

√

n
∑

i=1

wi (Zi − ẑ)
2

and consider scaled vectors

Z ′

i =
1

σZ
Zi , Ẑ ′ =

1

σZ
ẑ .

Then

Jξc,R,ϕ = σ2
Z −

σ2
Z d̂

′2

(1− r̂2)
,

d̂′ =

n
∑

i=1

wi S(−∆ϕi)
(

Z ′

i − Ẑ ′

)

,

and we can consider a “dimensionless” problem:

J̃ = 1−
d̂′2

(1− r̂2)
→ min

ω
(9)

Everywhere, except for individual values of ω, inequalities

0 ≤ d̂′2 ≤ 1, 0 < r̂2 ≤ 1 are satisfied. As a consequence,
the functional J̃ has values in the range [0, 1]. For some

points where ‖r̂‖ = 1, the functional J̃ is not defined. For
example, such a point is the value ω = 0, corresponding
to the motion along a straight line.

5.2 Optimization of Functional J̃

Figure 1 presents a typical plot of the functional J̃ with
a narrow “well” near the true value of ω, where the
functional is close to 0. For ω, which are very different from
the true value, the value is close to 1. A large number of
local minima is specific.

The functional J̃ is rather complicated for optimization.
The well near the true value can be very narrow, and for
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a good work of the minimum search algorithm we need
a correct initial approximation. Also J̃ becomes a convex
function only near the floor of the well, so one cannot
rely on the second derivative until the final steps of the
procedure. For the sake of numerical optimization, the
analytical expressions of the derivatives of (9) are provided

here. The derivatives of the functions d̂′, r̂ with respect
to ω will be denoted by dot. To improve readability, the

variables in the formula below are renamed as d := d̂′,
r := r̂.

d

dω
J̃ = −2

dTḋ

(1− r̂2)
− 2

d2rTṙ

(1− r̂2)
2
,

d2

dω2
J̃ = −2

(

ḋ2 + dTd̈
)

(1− r̂2)
− 8

(

dTḋ
)

(

rTṙ
)

(1− r̂2)
2

−2
d2
(

ṙ2 + rTr̈
)

(1− r̂2)2
− 8

d2
(

rT ṙ
)2

(1− r̂2)3
,

ṙ =

n
∑

i=1

wi(ti − t0)S(π/2) r(∆ϕi) ,

r̈ = −
n
∑

i=1

wi(ti − t0)
2 r(∆ϕi) ,

ḋ =

n
∑

i=1

wi(ti − t0)S(−∆ϕi − π/2) (Z ′

i − ẑ′) ,

d̈ = −

n
∑

i=1

wi(ti − t0)
2S(−∆ϕi) (Z

′

i − ẑ′) .

In practice, such an algorithm showed a good work: in the
case of local concavity we make a step of simple gradient
descent with magnitude δω = 0.005 1/s2, and in the case
of local convexity we make a step of the Newton’s method










ωk+1 = ωk − δω
d

dω
J̃(ωk) ,

d2

dω2
J̃(ωk) ≤ 0 ,

ωk+1 = ωk −
d

dω
J̃(ωk)/

d2

dω2
J̃(ωk),

d2

dω2
J̃(ωk) > 0 .

5.3 Initial Approximation for ω

To find the initial approximation, the following simple
algorithm is used. We construct difference vectors

Zi+1,i = Zi+1 − Zi

and calculate their direction angles ψi with the axis x.
In the absence of measurement errors, the following equa-
tion is true for uniform motion along the circle

ψi = ψ0 + ω τi , τi =

(

ti + ti+1

2
− t0

)

.

Then we can obtain the approximate value ω̌ by mean-
square approximation of the observations ψi:

ω̌ =

n−1
∑

i=1

τ2i
n−1
∑

i=1

ψi −
n−1
∑

i=1

τi
n−1
∑

i=1

τiψi

(n− 1)
n−1
∑

i=1

τ2i −

(

n−1
∑

i=1

τi

)2
. (10)

For correct work of the algorithm, it is necessary to remove
jumps in the values ψi, which can arise because standard
procedures like atan2 return value in the range (−π, π].

Fig. 2. Example of approximation of measurements by a
circle

5.4 Example of Algorithm Work

An example of the algorithm approximation is shown
in Fig. 2. The solid blue arc corresponds to the true
movement. Blue diamonds are measurements, a dotted line
connects each of them to the true position at the same
time instant. The red solid line shows the approximation
of the circular motion with angular velocity ω̂ evaluated
by minimization of functional (9), and the remaining
parameters are calculated by analytical formulas (4), (7),
and (6). The initial approximation ω̌ for the optimization
procedure was obtained using formula (10). The green
solid line depicts a circle with ω exactly equal to ω̌.

The true movement have the following parameters: R =

500 m, v = 80 m/s, ω = v/R = 0.16 1/s, ξc = [0 0]
T
m,

ϕ0 = 0 rad. The root-mean-square deviation of random
measurement errors is 100 m.

6. MODELING RESULTS

An ideal model trajectory is formed that consists of steady
motion sections and transition sections for which the
maximum tracking errors are defined in the standards
SUR.ET1.ST01.1000-STD-01-01. For this trajectory, 100
model tracks of measurements with a mean square devia-
tion of 70 m were generated. For each of them, a trajectory
was restored using the described algorithm. The graphs of
the root-mean-square deviation of the restored positions
from the true motion are constructed. The time plot of the
tangential deviation is depicted in Fig. 3 (thick solid black
line). Also, a similar graph for the Interacting Multiple
Model (IMM) algorithm, see Bar-Shalom et al. (2004),
Konovalov (2014), is given (red line). The dashed blue
line shows the graph of root-mean-square deviation of
measurements.

In the case of processing trajectories with outliers (rare
large deviations that are not be drawn from regular distri-
bution), the advantage of the proposed algorithm becomes
more evident. For example, see Fig. 4, which shows the
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Fig. 3. Graph of the root-mean-square longitudinal devi-
ation σ as a function of time. There are no outliers
in the measurements. The thick solid black line shows
the results by the described algorithm. The red line is
the results by the Interacting Multiple Model (IMM)
method. The dashed blue line is the track of measure-
ments.
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Fig. 4. Graph of the root-mean-square longitudinal devia-
tion σ as a function of time. The case of the presence
of outliers in the measurements. The thick solid black
line shows the results by the described algorithm. The
red line is the results by the Interacting Multiple
Model (IMM) method. The blue dashed line is the
track of measurements.

tangential deviation in the case of the presence of outliers
in measurements. With a probability of 1/20, the mea-
surement is an outlier. The outlier error is increased by a
factor of five compared to the regular level.

7. CONCLUSION

The algorithm for recovering an aircraft trajectory is
created. It is based on the calculation of the bundle of
trajectories, each of which represents a hypothesis about
the true motion of an aircraft. Among the assumptions on
the aircraft motion, there are the assumption about the
motion along a straight line and the assumption of motion
along a circle. The trajectories corresponding to these
assumptions are processed in the algorithm in a special

way. This allowed to improve the algorithm accuracy on
long straight line and circle sections, which are often
occurred in the real aircraft trajectories.

The constructed algorithm has a large number of param-
eters. At present, the values of almost all the parameters
are established from empirical considerations. Therefore,
it is planned to use the methods of machine learning to
find the optimal values of these parameters.
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