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A problem of identification of systematic errors in azimuth measurements by several radars is considered; observation 

of an aircraft motion is implemented on a certain time interval. The radar output data are presented by samples of measure-

ments of the slant range and azimuth. Additionally to the computation of errors in azimuth, the trajectory of the aircraft is 

reconstructed in simplified form of a polygonal line in the three–dimensional space. The algorithms elaborated were tested 

on model and real radar data. 

 

Radar systematic errors in azimuth lead to the spatial shift of the track of the aircraft under observation. 

If the same aircraft motion is observed by several radars, then there is possibility to calculate their systematic 

errors in azimuth. It is crucial that the considerable systematic errors are concerned only with the azimuth meas-

uring, but measurements of the slant range do not contain large systematic errors. 

The work deals with solving a problem of identification of systematic errors in azimuth measurements ob-

tained from several radars. It is assumed that each of radars measures the slant range and azimuth with some 

error. Measurements are made in a local coordinate system of each radar. Measurements from different radars 

come with own time steps. 

For large sizes of the air traffic control zones (the typical size is of 150 km or larger), application of 

the “flat–earth model” to computations gives large errors, so the “spherical–earth model” is used. The identifica-

tion algorithm elaborated earlier and using the flat–earth model is described in [1]. 

For solving the identification problem, the notion of the “reconstructed track” is introduced. The recon-

structed track is a polygonal line in the three–dimensional space. To each vertex of this line, a time instant is 

assigned. Coordinates of vertices can be regarded as independent variables. For fixed coordinates and any time 

instant, a point of the reconstructed track is put into correspondence (it is assumed that the time between 

the vertices of the line changes uniformly). 

The slant range and azimuth of the radar measurement give rise to uncertainty of a position of the observed 

aircraft in the form of a circle in the three–dimensional space, and the circle lies in the plane perpendicular to the 

local horizon at the point of placing the corresponding radar. 

The distance ρ  (between the point a
�

 of the reconstructed track and the circle with the center at the 

point c
�

, the radius r , and the normal vector n
�

) is calculated by the formula 

 

2
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� � �
. 

 

A non–decreasing function of the distance between the circle and the point of the reconstructed track 

(the point corresponds to the time instant of the radar measurement) is called the residual of this radar measure-

ment. Simulation has showed that the quadratic distance function, which is non–decreasing for nonnegative val-

ues of the argument, is the most suitable to be taken as the residual. 

Construct now a function whose arguments are the coordinates of the vertices of the reconstructed track and 

the systematic errors in azimuth of all radars observing the same aircraft. Using the systematic errors, let us 
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make corrections in values of the azimuths for all radar measurements. After this, calculate and summarize up 

the residuals of all measurements. The sum is regarded as the function value. Then, the value of the argument 

providing the minimum of the function will be comprised of the apices of the reconstructed track that approxi-

mates the real trajectory of the aircraft and of the values of the systematic azimuth errors that provide the best 

match of the trajectories from different radars. 

In this way, the problem of finding the systematic errors in azimuth can be formulated as a problem of de-

termining the minimum point for a function of several variables. 

For solving this minimization problem, we used the Hooke and Jeeves algorithm [2] that gives good results 

in the case of many variables. In the problem under consideration, the argument of the minimized function has 

dimension about 50–600 depending on the initial data and the solution parameters. To increase the chance of 

achieving the global minimum, the algorithm in [3] was completed with elements of the random search (i.e., 

the Monte Carlo method). 

If in the radar data there is additional information on the aircraft altitude, the algorithm can take into ac-

count this information. In this case, the measurement residual is a non–decreasing function of the distance be-

tween a point of the reconstructed track and the radar measurement, which is then a point in the three–

dimensional space. 

The algorithm was debugged on both model and real data.  

For testing the algorithm of finding the radar systematic errors in azimuth, a collection of typical trajectory 

motions of the aircraft was taken (namely, direct motion, turn, maneuver on take–off and landing in the airport 

zone, etc.), the coordinates of several radars were given (see the figure), and the ideal measurements of the azi-

muth, slant range, and the altitude were simulated with necessary time–step. In simulation of the model trajec-

tory motion of the aircraft under observation, the standard system of ordinary differential equations of the air-

plane motion was used that is adopted for navigational computations [4, 5]. 

Further, for simulation of real corrupted measurements of each radar, the systematic errors in azimuth and 

random errors (distributed by the normal law) in the azimuth, slant rang, and altitude were inserted. 

The algorithm determines the systematic errors with good accuracy. 

An example of finding the systematic errors on the basis of model data is shown in the figure. 
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Radar tracks; at the left: the initial tracks without corrections in azimuth;  

 at the right: the tracks turned by the computed systematic errors 

 

For real radar data, stability of reconstructed values of the systematic errors is not always suitable. This can 

be explained by some factors, which have not been taken into account in the model. For example, such factors 

can be the systematic error dependence on the radar direction to the aircraft, the systematic errors in the slant 

range distance, and so on. 
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